skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clark, Brennen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Binder Jetting (BJ) has increased in popularity and capability since its development at MIT as it offers advantages such as fast build rates, integrated overhang support, low-power requirements, and versatility in materials. However, defects arise during layer spreading and printing that are difficult to remove during post-processing. Many of these defects are caused by particle rearrangement/ejection during binder deposition. This study explores methods of reducing particle rearrangement and ejection by applying small amounts of moisture to increase the cohesive forces between powder particles. A moisture application system was built using a piezo-electric disk to atomize water to apply a desired liquid to the BJ powder bed without disruption. The moisture is applied after spreading a new layer. Lines of binder were printed using varying droplet spacings and moisture levels. Results show that the moisture delivery system applied moisture levels across the entire application area with a standard deviation under 23%. The moisture levels delivered also had a single position test-to-test uniformity standard deviation under 21%. All tested levels of moisture addition showed mitigation of the balling defects observed in lines printed using dry powder under the same parameters. Moisture addition decreased effective saturation and increased line dimensions (height and width), but lines printed using the smallest amount of moisture tested, showed similar saturation levels and line widths to lines printed in dry powder while still partially mitigating balling. 
    more » « less